

$$
\frac{1}{2}+\frac{3}{5}=
$$

Samantha used shaded strips to solve this problem.

Samantha's solution

I know $\frac{1}{2}=\frac{5}{10^{\prime}}$ I thought of $\frac{3}{5}$ as $\frac{6}{10} \quad \frac{5}{10}+\frac{6}{10}=\frac{11}{10}=1 \frac{1}{10}$

$$
\frac{2}{5}+\frac{1}{2}=
$$

Renaldo used percent equivalents to solve this problem.

Renaldo's solution

$$
\begin{aligned}
& \frac{2}{5} \text { is the same as } \frac{4}{10^{\prime}} \text {, or } 40 \% \text {. } \\
& \frac{1}{2} \text { is } 50 \text { out of } 100 \text {, or } 50 \% \text {. }
\end{aligned}
$$

$$
\begin{gathered}
40 \%+50 \%=90 \% \\
\frac{2}{5}+\frac{1}{2}=\frac{9}{10}
\end{gathered}
$$

$$
\frac{1}{2}+\frac{1}{6}=
$$

Tamira used a number line to solve this problem.

Tamira's solution

$$
\frac{4}{6}=\frac{2}{3}
$$

52
fifty-two

Adding Fractions (page 2 of 2)

$$
\frac{3}{4}+\frac{1}{6}=
$$

Deon used a clock model to solve this problem.

Deon's solution

Starting at $12: 00$ and moving $\frac{3}{4}$ of the way around, you land at 9:00.
Moving $\frac{1}{6}$ is 2 hours more, or 11:00.
That is the same as $\frac{11}{12}$ of the way around the clock.

$$
\text { So. } \frac{3}{4}+\frac{1}{6}=\frac{11}{12}
$$

$$
\frac{3}{4}+\frac{5}{8}+\frac{1}{2}=
$$

Yumiko used shaded strips to solve this problem.

Yumiko's solution

Both $\frac{3}{4}$ and $\frac{5}{8}$ are greater than $\frac{1}{2}$, so the answer will be more than 1 whole.

$\frac{5}{6}+\frac{1}{3}=$ \qquad $\frac{7}{8}+\frac{1}{2}+\frac{1}{4}=$ \qquad

